NAG Toolbox for MATLAB

f08ss

1 Purpose

f08ss reduces a complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, where A is a complex Hermitian matrix and B has been factorized by f07fr.

2 Syntax

```
[a, info] = f08ss(itype, uplo, a, b, 'n', n)
```

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, f08ss must be preceded by a call to f07fr which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter **itype**, as indicated in the table below. The table shows how C is computed by the function, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

itype	Problem	uplo	В	С	Z
1	$Az = \lambda Bz$	'U' 'L'	$U^{\mathrm{H}}U$ LL^{H}	$U^{-\mathrm{H}}AU^{-1}$ $L^{-1}AL^{-\mathrm{H}}$	$U^{-1}y$ $L^{-H}y$
2	$ABz = \lambda z$	'U' 'L'	$U^{\mathrm{H}}U$ LL^{H}	$UAU^{ m H} \ L^{ m H}AL$	$U^{-1}y$ $L^{-H}y$
3	$BAz = \lambda z$	'U' 'L'	$U^{\mathrm{H}}U$ LL^{H}	$UAU^{\mathrm{H}} \ L^{\mathrm{H}}AL$	U ^H y Ly

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: itype – int32 scalar

Indicates how the standard form is computed.

$$\begin{split} \textbf{itype} &= 1 \\ &\quad \text{if } \textbf{uplo} = \text{'U'}, \ C = U^{-\text{H}} A U^{-1}; \\ &\quad \text{if } \textbf{uplo} = \text{'L'}, \ C = L^{-1} A L^{-\text{H}}. \\ \textbf{itype} &= 2 \text{ or } 3 \\ &\quad \text{if } \textbf{uplo} = \text{'U'}, \ C = U A U^{\text{H}}; \\ &\quad \text{if } \textbf{uplo} = \text{'L'}, \ C = L^{\text{H}} A L. \\ \textbf{\textit{Constraint: } itype} &= 1, \ 2 \text{ or } 3. \end{split}$$

[NP3663/21] f08ss.1

f08ss NAG Toolbox Manual

2: uplo – string

Indicates whether the upper or lower triangular part of A is stored and how B has been factorized.

$$uplo = 'U'$$

The upper triangular part of A is stored and $B = U^{H}U$.

$$uplo = 'L'$$

The lower triangular part of A is stored and $B = LL^{H}$.

Constraint: **uplo** = 'U' or 'L'.

3: a(lda,*) - complex array

The first dimension of the array **a** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n Hermitian matrix A.

If $\mathbf{uplo} = 'U'$, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If $\mathbf{uplo} = 'L'$, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.

4: b(ldb,*) – complex array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The Cholesky factor of B as specified by **uplo** and returned by f07fr.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array a The second dimension of the array b.

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldb

5.4 Output Parameters

1: a(lda,*) - complex array

The first dimension of the array **a** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The upper or lower triangle of a contains the corresponding upper or lower triangle of C as specified by **itype** and **uplo**.

2: info - int32 scalar

info = 0 unless the function detects an error (see Section 6).

f08ss.2 [NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

```
1: itype, 2: uplo, 3: n, 4: a, 5: lda, 6: b, 7: ldb, 8: info.
```

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B^{-1} (if **itype** = 1) or B (if **itype** = 2 or 3). When f08ss is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document for f08sn for further details.

8 Further Comments

The total number of real floating-point operations is approximately $4n^3$.

The real analogue of this function is f08se.

9 Example

```
uplo = 'L';
itype = int32(1);
uplo = 'L';
a = [complex(-7.36, +0), complex(0, 0), complex(0, 0), complex(0, 0);
      complex(0.77, +0.43), complex(3.49, +0), complex(0, 0), complex(0,
0);
       complex(-0.64, +0.92), complex(2.19, -4.45), complex(0.12, +0),
complex(0, 0);
      complex(3.01, +6.97), complex(1.9, -3.73), complex(2.88, +3.17),
complex(-2.54, +0)];
b = [complex(3.23, 0.00), complex(0, 0), complex(0, 0), complex(0, 0);
 complex( 1.51, 1.92), complex( 3.58, 0.00), complex(0, 0), complex(0,
0);
  complex (1.90, -0.84), complex (-0.23, -1.11), complex (
                                                          4.09,
complex(0, 0);
  complex (0.42, -2.50), complex (-1.18, -1.37), complex (
                                                         2.33,
                                                                0.14),
complex( 4.29, 0.00)];
[b, info] = f07fr(uplo, b);
[aOut, info] = f08ss(itype, uplo, a, b)
aOut =
 -2.2786
                                                            0
                         0
                                          0
  1.7799 + 2.0310i -1.1255
                                          0
                                                            0
  0
 -0.1206 - 2.5286i -1.0602 - 0.8600i
                                     2.3103 + 0.9198i -0.7133
info =
          0
```

[NP3663/21] f08ss.3 (last)